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Abstract. We argue that the evolution of coloured partons into colour-singlet hadrons has an approxi-
mate factorisation into an extended parton-shower phase and a colour-singlet resonance-pole phase. The
amplitude for the conversion of colour-connected partons into hadrons necessarily resembles Regge-pole
amplitudes since qq resonance amplitudes and Regge-pole amplitudes are related by duality. The ‘Regge-
cascade’ factorisation property of the N-point Veneziano amplitude provides further justification of this
protocol. This latter factorisation property, in turn, allows for the construction of general multi-hadron
amplitudes in amplitude-squared factorized form from (1→ 2) link amplitudes. We suggest an algorithm
with cascade-decay configuration, ordered in the transverse momentum, suitable for Monte Carlo simula-
tion. We make a simple implementation of this procedure in Herwig++, obtaining some improvement to the
description of the event-shape distributions at LEP.

PACS. 12.38.Aw; 12.40.Nn; 13.87.Fh

1 Introduction

By ‘hadronisation’, we loosely mean the final phase in
the process of jet formation, where coloured partons at
the end of the parton shower turn into colour-singlet
hadrons.
The hadronisation phase is presumably not completely

separable from the perturbative phase, but approxima-
tions can be made, and we can for instance set the pertur-
bative coupling to zero in the hadronisation phase and vice
versa. This is, in effect, the approach ordinarily taken in
the Monte Carlo event generators [1–4].
A better approximation may be to allow the perturba-

tive coupling to extend into the hadronisation phase, and
continue the perturbative evolution down to zero [5].
The universality, i.e., the non-dependence on, for in-

stance, where the other partons are, of the cut-off in the
first case and the coupling in the second case can be jus-
tified in the Gribov confinement picture [6, 7]. Although
the complete treatment of the gluon Green’s function is
lacking at present, for the quark Green’s function, Gri-
bov’s method indicates that its behaviour is governed by
a universal equation containing both the gluonic semi-
perturbative and the long-distance super-critical contri-
butions. We can then separate out the semi-perturbative
contribution by means of the effective coupling procedure,
so that the remaining dynamics, of hadronisation, would
be a predominantly colour-singlet interaction, mediated by
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resonances and poles. In other words, the coloured par-
tons that remain at the end of the extended parton-shower
phase turn into hadrons by an interaction which is effec-
tively colour-singlet.
Colour preconfinement [8–12] dictates that at the end

of the parton shower, the colour-connected parton pairs,
i.e., the colour dipoles, have a mass spectrum with a char-
acteristic scale of a few times the parton-shower cut-off,
and this mass scale normally turns out to be about 1 GeV.
However, this is violated in low-pT jets [13].
As is the case in the Monte Carlo event generators, let

us consider these colour-preconfined units as the starting
point of hadronisation. The colour-connected partons then
exchange objects that are effectively colour-singlet to turn
into hadrons.
A justification for the resemblance of the confining dy-

namics with colour-singlet exchange is in duality, i.e., the
observation that the summation over resonance states re-
produces the dynamical behaviour characteristic of Regge
poles, and vice versa [14, 15].
In this paper, we concretize this statement by observing

that the explicitly dual N -point Veneziano (i.e., the open
bosonic string) amplitude [16–18] satisfies an amplitude-
squared factorisation property that corresponds to cascade
decay, where each vertex, shown in Fig. 1, has a Regge-like
angular behaviour, except in the final decay.
Long-distance dynamics can then be treated as a series

of Regge-like decay. This is literally true when the decay-
ing unit is heavy, but because of semi-local duality [19–22],
Regge theory often remains a good approximation even in
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Fig. 1. A link in the cascade-decay chain

the low-energy region, or the low-mass region of the colour-
preconfined units, where it is not formally supposed to be
applicable, particularly after the resonances and dips have
been integrated over.
Combining this result with the above statement of ap-

proximate factorisation of semi-perturbative and hadro-
nisation phases, we have a picture of hadronisation where
partons evolve via the parton shower and hadrons evolve
via the Regge cascade. The exchange in the hadronisa-
tion phase normally consists of the meson trajectories, but
the baryons and even the pomeron trajectories are also
allowed.
The formalism is developed between Sects. 2 and 7.
There is ambiguity as to whether, and to what extent,

the forced g→ qq̄ splitting at the end of the parton shower,
which is adopted by HERWIG [1–3] more or less for the
sake of convenience, occurs in reality. In [5], we argued
that there may be a physical origin to the low-energy en-
hancement of the g→ qq̄ splitting, due to the string tension
‘pulling apart’ the colour octet. Another possibility would
be that the gluon acquires a pole mass and hence can de-
cay into two light quarks over a finite time. Even in this
case, some of the gluons may remain intact, as all gluons do
in PYTHIA [4]. Since finite-time effects (gluon decay) are
not completely separable from infinite-time effects (colour-
singlet interaction), the latter effect cannot be neglected.
In Sect. 8, we discuss the hadronic observables that are po-
tentially sensitive to this aspect of hadronisation.
In Sect. 9, we examine the implementation of a simpi-

fied procedure based on the preceding discussions in
Herwig++. We compute a number of jet observables at
the Z0 pole and compare with the Herwig++ and LEP
numbers.

2 The (2→ 2) Regge amplitude

The amplitude for (2→ 2) scattering with Mandelstam
variables s and t, omitting the signature factor, is

A= β(t)Γ (�−α(t)) (−s/s0)
α(t) . (1)

β(t) is the coupling factor. Either β(t) or β(t)Γ (�−α(t))
is often taken to be constant. α(t) is the t-channel trajec-
tory and � is the spin of its lowest-lying member. s0 is the
Regge characteristic scale. We identify s with the dipole
mass squared later on.
The leading flavour-singlet trajectory is the near-

degenerate ρ/ω/f/a family:

α(t) = α0+α
′t≈ 0.5+0.9t , �= 1 . (2)

t is measured in GeV2. When
√
s becomes large, above

10GeV or so, we should also consider the pomeron con-
tribution. The typical transverse momentum generated by
hadronisation, in units of GeV, is then

〈kT 〉hadronisation ≈ 1/
√
0.9 log(s/s0) . (3)

For s ≈ 10s0, which can occur when, for example,
√
s0 =

1GeV and
√
s≈ 3 GeV, we have a transverse momentum of

0.6GeV. This gives a measure of the extent of the violation
of local parton–hadron duality due to the colour-singlet
phase.
For lighter dipoles, the transverse momentum becomes

greater. However, the transverse momentum cannot ex-
ceed half of the dipole mass. From (1), we see that the
turn-over should occur near s= s0.
A natural choice of s0 is obtained by comparing with

the Veneziano model. Corresponding to (1), we have
a Veneziano amplitude

A= β
Γ (�−α(t))Γ (�−α(s))

Γ (�−α(s)−α(t))
. (4)

In the Regge limit, by applying the Stirling factorial ap-
proximation, we recover (1) with the extra constraints
β(t) = const. and s0 = 1/α

′, where α′ is the slope. For
α′ = 0.9 as in (2), we have s0 = 1.1 GeV

2. Using the same
α′ in the s- and t-channels is justified since α′ corresponds
to the inverse mesonic string tension, which is physically,
although not necessarily in Regge phenomenology, a uni-
versal constant. s0 = 1.1 GeV

2 implies that the typical
transverse momentum generated in hadronisation is at
most ∼ 0.5 GeV, even for the lighter dipoles.
For the sake of comparison, the HERWIG cluster mass

cut-off has the default value of 3.5 GeV so that the typi-
cal cluster mass is about a half of this, and so the typical
transverse energy is about 0.9GeV. Clusters are the colour-
connected units that form the seed of hadronisation in
HERWIG. PYTHIA has the kT distribution generated ar-
tificially by a double Gaussian distribution, and the width
σ of the primary Gaussian distribution has the default
value of 0.36 GeV. This does not imply that hadronisation
in HERWIG is harder than in PYTHIA, as will be demon-
strated by a simulation in Sect. 8. One of the reasons is that
we have so far neglected the hadron masses.
The ratio of the yield of hadron pairs that require heav-

ier flavour exchange in the hadronisation phase to the yield
of the states that only require the exchange of light flavours
is given as a function of their invariant massM2inv by

∝
(
M2inv

)2(α0−0.5) . (5)

Here α0 is the intercept of the exchanged trajectory, and
is less than 0.5. We have squared the amplitude to obtain
the probability. We have assumed that the effect due to
the difference in the slope α′ of the two trajectories can be
ignored.
A possible practical application of the above formula

would be in baryon pair production in jets. The largest
α0 for baryons is 0.0, corresponding to one of the ∆/N
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trajectories [23]. The relative baryonic yield is therefore
proportional to the inverse of the invariant mass squared.
The physics of three-body baryonic decay of the B-

mesons [24] is subject to the same consideration. We can
understand the enhancement of the three-body decays to
two-body decays as the suppression of the baryon exchange
when the baryon pair mass is large. This view is supported
by the so-called ‘threshold effect’, i.e., the tendency that
the baryon–antibaryon pair is formed with small invari-
ant mass. A similar phenomenon is seen in the production
of pp̄ in low-virtuality γγ collision at Belle [25, 26], where
additional mesons often accompany pp̄, particularly when
sufficiently above the threshold [27].

3 Factorisation of the N-point amplitude

TheN -point Veneziano amplitude corresponds to the scat-
tering of the open bosonic string shown in Fig. 2. This is
often expressed in a cyclically symmetric form [17, 18], but
for our purpose, the formulation of [28] is more convenient.
We have

A= gN−2
N−2∏

i=2

∫ 1

0

duiu
−1−α(ti)
i (1−ui)

−1−µ2

×
i∏

j=2

⎛

⎝1−
i∏

k=j

uk

⎞

⎠

−2pj ·pi+1

. (6)

The approximations made in the above equation, in terms
of the trajectory, is α(t) =−µ2+ t where µ is the mass of
the external legs. This approximation will be removed in
the factorized formula to be derived later on. gN−2 is the
coupling factor. The ti are the square of the momenta that
flow in between the ith and the (i+1)th legs, defined by

ti =

⎛

⎝
i∑

j=1

pj

⎞

⎠

2

=

⎛

⎝
N∑

j=i+1

pj

⎞

⎠

2

. (7)

The multi-Regge limit is obtained in (6) by the approx-
imation that the ui are small. However, when considering

Fig. 2. The N-point amplitude

the application to hadronisation, this multi-Regge formula
is not very convenient, for two reasons. The first is that
resonances are not incorporated. The second is that it is
difficult to construct an iterative evolution algorithm based
on this equation, that starts from two incoming objects.
Let us derive a different limit of (6), corresponding to

the cascade-decay configuration illustrated in Fig. 3.
In (6), we consider a resonance in the lth and (l+1)th

legs. We write

2pl ·pl+1+µ
2 = (pl+pl+1)

2−µ2 = α(sl) = n− ε . (8)

n is an integer which corresponds to the maximum spin in
this channel. The integral is dominated by the region ul ∼
1. If ul−1, ul+1 << 1, we find that

lim
ε→+0

A(1, ..., l−1, l, l+1, ..., N)

≈A(1, ..., l−1, l+1, ..., N)

× g lim
ε→+0

∫ 1

0

dulu
−1−α(tl)
l (1−ul)

−1−n+ε

=Aproduction×Adecay . (9)

The amplitude thus factorizes into the production part and
the decay part. This is distinct from the usual resonance
factorisation property of the N -point amplitude [17, 18],
since the latter is in general not amplitude-squared fac-
torisable and is therefore of limited use.
The decay part is just the Euler beta function. With the

usual analytisation convention, this becomes

lim
ε→±0

Adecay = g
Γ (−n+ ε)Γ (−α(tl))

Γ (−α(tl)−n+ ε)
. (10)

The form of the amplitude is identical with the 4-point
Veneziano amplitude excepting the difference in the coup-
ling factor. If n is large, the angular distribution has Regge
behaviour. Resonance leads to the factorisation in (9), but
the Regge angular distribution is independent of reson-
ance. In general, so long as the mass of the decaying system

Fig. 3. Cascade-decay picture of the N-point amplitude
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is large, one can consider the dynamics to be dominated
either by resonances, with ul ≈ 1, or by poles, with ul ≈ 0.
We can therefore consider a ‘Regge cascade’ iterative

procedure, in which we have a series of two-body decays,
each of which except the final ones exhibiting Regge angu-
lar distribution. We can avoid intermediate configurations
that are manifestly non-Regge by requiring that for each
decay, s is large and the masses of the two decay products
are small. This can be achieved by the choice of a sensible
ordering variable, related to the mass. This will be dis-
cussed in Sect. 5.
Let us consider the production amplitude in (9). This is

as given by (6), but the mass term needs care.
We consider a link in the cascade-decay chain that has

resonant daughters. Denoting the decay by [0→ 12] as
shown in Fig. 1, the decay distribution is given by

Adecay(0→ 12)

= g lim
ε→+0

∫ 1

0

duu−1−α(t)(1−u)−1−µ
2−2p1·p2 .

(11)

This is as before. However, (8) needs to be modified to

2p1 ·p2+µ
2 = (p1+p2)

2−p21−p
2
2+µ

2

= α(p20)−α(p
2
1)−α(p

2
2)

= n0−n1−n2− ε . (12)

In terms of the 4-point Veneziano amplitude, we have the
replacement

α(s)→ α(s)−α(s1)−α(s2) , (13)

so that the decay amplitude is modified to

Adecay ∼ g
Γ (−α(s))Γ (−α(t))

Γ (−α(s)−α(t))

−→ g
Γ (−α(s)+α(s1)+α(s2))Γ (−α(t))

Γ (−α(s)+α(s1)+α(s2)−α(t))
.

(14)

The Regge limit of the amplitude is given by

Adecay(0→ 12)∼ gΓ (−α(t))(−α(s)+α(s1)+α(s2))
α(t) .
(15)

For simplicity, we have omitted other permutations of
external particles. The introduction of some of these so-
called ‘twisted’ terms [17, 18] result in the signature fac-
tors:

(−α(s))α(t) −→ (α(s))α(t)
[
1± e−iπα

±(t)
]
. (16)

The sign between the two terms, i.e., the signature, de-
pends on the nature of the trajectory being exchanged.

4 The density function

We now turn to developing a practical algorithm based on
the factorisation of (9) and the decay amplitude of (15).We

first calculate the mass distribution for the daughters 1 and
2 in Fig. 1 by the optical theorem.
We temporarily introduce the decay width Γ in order to

keep track of the phase space factors. The two-body decay
width of an object with mass

√
s, expressed in terms of t, is

given by

dΓ (0→ 12)

dt
=

1

16πs3/2
|A(0→ 12)|2 . (17)

The density function is defined by generalizing this to

dΓ (0→ 12)

dtds1ds2
=

1

16πs3/2
|A(0→ 12)|2ρ(s1)ρ(s2) . (18)

We evaluate ρ(s) by the optical theorem. Starting from
the total decay width, which is in general given by

Γ =
1

2S+1

1
√
s
Im [A(0→X→ 0)] , (19)

we obtain

ρ(s1) =
1

2π
Im [A(1→X→ 1)] . (20)

The amplitude A(1→X→ 1) can be estimated as

g2
Γ (−α(s1))Γ (−α(0))

Γ (−α(s1)−α(0))
≈ g2Γ (−α(0))(−α(s1))

α(0) ,

(21)

so that after substituting g2 = α′β, we have

ρ(s1)≈
α′β

2π
Γ (−α(0))(α(s1))

α(0) sin(πα(0)) . (22)

Let us absorb the Γ function and the phase factor in β.
There are several possibilities for estimating this coupling
coefficient. For instance, an order-of-magnitude estimation
can be obtained by comparing against the π+π− total cross
section. We have

σtot(12→X) =
1

s
ImA(12→ 12)

∣∣∣∣
t=0

≈
β

s
(α′s)α(0) ≡ α′β(α′s)α(0)−1 . (23)

From [15], using coupling factorisation, we have

σtot, reggeon(π+π−)≈
σ(π+p)σ(π−p)

σ(pp)

=
27.56×36.02

56.08
s−0.4525(mb) .

(24)

Hence

β ≈ 20mbGeV2 ≈ 50 , (25)

so that

ρ(s1)≈
50α′

2π
s0.54751 ≈ 7s0.551 . (26)
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ρ is measured in units of GeV−2 and s is measured in units
of GeV2. ρ, in principle, includes the non-continuum, res-
onance, contribution as well as the other trajectories.
The density thus obtained does not agree with the one

obtained by integrating over two-body decays. The contri-
bution to the density function from two-body decay is

ρ(s)0→12 =

∫
dtds1ds2
16π2s

|Adecay|
2
ρ(s1)ρ(s2) . (27)

This does not agree with (26). This situation is familiar
from perturbation theory. The single emission of a gluon
from a parton gives rise to an infrared-divergent contri-
bution to the cross section. This is resolved by adding
together the virtual corrections of the same order. The
Sudakov form factor gives an all-order expression for the
probability of emission (or no emission), and this effec-
tively sums, up to an infrared cut-off, the divergent parts of
the real and virtual diagrams together.
Making the correspondence with the perturbative case,

(20) is the all-order sum. Equation (27) corresponds to the
single-emission cross section. The ‘splitting function’ is the
ratio of the two:

Psplitting(Φ)dΦ=
dρ(s)0→12
ρ(s)

=
1

ρ(s)

dtds1ds2
16π2s

|Adecay|
2
ρ(s1)ρ(s2) .

(28)

dΦ is the phase space element as before. Writing down the
Sudakov form factor requires the choice of a suitable evolu-
tion variable.

5 The ordering variable

The factors to be considered in proposing the ordering vari-
able for cascade decay are the following.

1. The algorithm generates all configurations and avoids
double counting.

2. The ordering should be physical, i.e., there should be
Regge behaviour at every vertex except the last de-
cay. Vertices where the daughtermasses are comparable
with the mass of the mother should be avoided where
possible.

3. It should be local, i.e., the decay in one branch of the
tree should not depend on the decay of the other.

In view of the above, it would seem that ti defined in (6)
may be suitable, as any collection of ti has unique order-
ing so long as there are no degenerate subsets. Thus the
first point is satisfied. We may further improve this order-
ing and say that the ordering is in each branch of the tree,
so that in order to generate the decay somewhere in one
branch, it is not necessary to look up the values of ti in
other parts of the tree. This then satisfies the locality con-
dition. If we require that |ti| are ordered in the decreasing
order, the decay with the largest daughter masses would
occur first, so that the requirement of Regge behaviour at
every vertex would be approximately satisfied.

However, the form of (28) suggests that this may not
be the best choice insofar as the ease of event gener-
ation is concerned. A better choice would involve the
squared masses s1 and s2. We therefore add the following
conditions.

4. The ordering variable is expressible in terms of the
masses of the daughters.

5. An approximate solution is acceptable if the approxi-
mation has a physical ground.

This suggests the quantity

s1s2

s
≈ |t|min . (29)

Unlike ti, si depend on the configuration of the tree, and so
does, to some extent, the above quantity. This would some-
times lead to the violation of the uniqueness of ordering.
The quantity defined above is similar in form to the

transverse momentum, so that we also choose to call this
quantity k2T. This is proportional to the transverse momen-
tum of the emission that would be required for this cascade
decay, had the decay been caused by the emission of a qq̄
pair. We also define the rapidity y by

y =
1

2
log(s2/s1) . (30)

From the form of ρ(s), we have

ρ(s1)ρ(s2)

ρ(s)
≈ ρ(k2T) . (31)

Using this relation, (28) simplifies to

Psplitting(Φ)dΦ=
dt

16π2
dk2Tdy |Adecay|

2
ρ(k2T) . (32)

Since |t|min ≈ k2T and Adecay, from (15), only have a mild
dependence on s1 and s2, we conclude that the distribution
of the splitting function is almost flat in y.
The Sudakov form factor, that is, the probability of no

decay in between two specified phase space boundaries, is
given in general by

∆(Φ) = exp

[

−

∫ Φ

Φ0

Psplitting(Φ
′)dΦ′

]

. (33)

Using the simplified expression of (32) and further impos-
ing the approximations

|t|min = k
2
T , Adecay = gΓ (−α(t))(−α(s))

α(t) , (34)

we obtain the estimate

∆(k2T, s)≈ exp

[

−

∫ k2T
dQ2dy

β

16π2

×
Γ (−α(−Q2))2

2 log(α(s))
(α(s))2α(−Q

2)ρ(Q2)

]

.

(35)



584 K. Odagiri: Regge-cascade hadronisation

This formula then gives the approximate cascade-decay
evolution. From this equation, we see that the dominant
dynamical factor is in the exponent (α(s))2α. The inte-
gration over y approximately yields log s, which cancels
against the corresponding expression in the denominator.
Absorbing the otherQ2 dependence in β and after integra-
tion, we obtain

∆(k2T, s)≈ exp

[
(β/100)

logα′s
(α′s)2α(−k

2
T)

]
. (36)

This can be contrasted with the perturbative expres-
sion [5]

∆(y) = exp

[
−

∫
dQ2

Q2
dy
αS(Q

2)CF
π

]
, (37)

Comparing (35) and (37), we may obtain an effective and
non-universal ‘non-perturbative αS’.

6 Algorithm for cascade decay

The proposed algorithm for generating multi-hadron final
states is, in outline, as follows.

1. Terminate the parton shower, for instance, by means of
a universal coupling. In the course of this process, some
or all of the gluons become qq̄.

2. Form colour-singlet units from colour-connected par-
tons. Depending on whether they involve gluons or
not, these would respectively correspond to kinked
strings [4] and clusters [1–3]. Kinked strings may, for
instance, be treated dipole-by-dipole. One first chooses
a colour-connected dipole in the kinked string and, dur-
ing or after its hadronisation, turn to the resolution of
the remaining colour by re-interacting with the other
colour-connected parton(s).

3. The dipole hadronisation proceeds by cascade decay.
The evolution variable is k2T, defined by (29). An initial
value is set for this, at about s/4 where s is the mass
squared of the dipole. The simplified form of the Su-
dakov form factor is given by (36).

4. The rapidity is generated either as a flat distribution,
or by using, for instance, (32). The masses of the two
daughters are calculated from k2T and y. t is generated
according to |Adecay|

2
.

5. For each daughter, the initial value for the evolution
variable is the k2T of the decay that just took place. The
t-channel 4-momentum is recorded so that the kinemat-
ics for the next decay can be evaluated without having
to sum over the momenta of other branches.

6. At some stage, the daughters are identified with physi-
cal resonances. This can be incorporated into the dens-
ity function ρ.

7. The process is repeated until every branch either has
been identified with a physical resonance or its k2T has
reached zero. The latter would correspond to a decay
into two ground-state mesons.

Although our starting point involved an explicit formu-
lation of the multi-particle amplitude, the above procedure

is more general and depends only on the principles un-
derlying the amplitude, namely duality, factorisability and
Regge behaviour. The Regge amplitudes are generalisable
to non-scalar ground-state hadrons, and it is a simple mat-
ter to include flavour.

7 A Regge fragmentation function

As a special case of the cascade-decay tree configuration,
let us consider the ‘fragmentation-function’ configuration,
shown in Fig. 4. This potentially involves cases with very
heavy daughters so that, for instance, (15) may fail, but
we proceed by treating it as an approximation. In place
of (18), we have

dΓ (0→ 12)

dtds2
=

1

16πs3/2
|A(0→ 12)|2ρ(s2) . (38)

The first daughter is the physical, ground-state, hadron
that splits off. We neglect the mass of this hadron. The
splitting function is

Psplitting(Φ)dΦ=
ρ(s2)

ρ(s)

ds2
s

dt

16π2
|Adecay|

2
. (39)

We denote the energy fraction of the branching particle,
i.e., particle 1, by z, so that s2 = s(1− z). Our approxima-
tion is valid when z ≈ 1. We obtain

Psplitting(Φ)dΦ= (1− z)
0.55dz

g2dt

16π2
(α(sz))2α(t) . (40)

The evolution variable this time is z, so we integrate over t.
For α(0) = 0.55, we obtain

Psplitting(z)dz = dz(1− z)
0.55 β

16π2
(α(sz))1.1

2 log(α(sz))
. (41)

The approximate Regge fragmentation function is

f(z) = P (z)≈ z1.1(1− z)0.55×O(1) . (42)

Fig. 4. Fragmentation-function picture of the N-point ampli-
tude

8 Signature of gluon splitting
in the three-body final state

As discussed in Sect. 1, the amount of g→ qq̄ forced split-
ting is an ambiguity in our picture of hadronisation. In this
section, we consider the hadronic observables in low-energy
low-multiplicity events, three-body in particular, that are
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Table 1. The number of primary hadrons, gener-
ated using HERWIG and PYTHIA

Final state HERWIG PYTHIA

1 hadron 0 0
2 hadrons 313 269
3 hadrons 359 1293
4 hadrons 2810 2795
5 hadrons 955 3340
6 hadrons 3828 1699
7 hadrons 483 494
8 hadrons 1150 96
> 8 hadrons 102 14

Even no. hadrons 8162 4860
Odd no. hadrons 1838 5140
All 10000 10000

sensitive to this aspect of hadronisation. Since HERWIG
and PYTHIA represent two extreme parametrisations of
this splitting, we carry out a simulation using these gener-
ators. Both generators are expected to perform badly with
the default parameter set, as few-body final states are not
what the generators are designed for.
We consider the study of exclusive three-body pri-

mary hadron production in charm events at BELLE1.
In both generators, we adopt the default parameter sets.
The centre-of-mass energy is 10.58GeV corresponding to
BELLE, and we select the charm pair production events,
with the matrix-element correction turned on so that the
hard e+e− → cc̄g configuration is generated according
to the perturbative matrix element. We generate 10 000
events in each case.
We turn off the decay of hadrons in order that the gen-

erated hadrons are ‘primary’. The generated final state
corresponds to the reconstructed few-body events with no
further resonances among the final state particles.
We first present a table of the number of the pri-

mary hadrons in Table 1. HERWIG, based primarily on the
isotropic two-body decay algorithm, normally leads to an
even number of hadrons in the final state. The exception to
the rule occurs when one of the clusters is too light to de-
cay into two hadrons. In this case, the cluster is identified
with the lightest meson with the corresponding quantum
numbers. This predominance of even-numbered multipli-
city is considered to be an artifact [30], but since this phe-
nomenon is due to the forced g→ qq̄ splitting, it is possible
that an effect of this nature may occur in reality to some
extent.
Both generators predict a typical multiplicity of about

four to six primary hadrons.
We now look at the kinematic distribution of the three-

hadron final state, rejecting the rare events containing
baryons. When doing so, we propose to make use of a two-
dimensional scatter plot in the rapidity y and the loga-
rithm log(kT) of the transverse momentum, both being
measured against the ‘jet’ direction. We choose this set
of observables in order that perturbative emissions have

1 We thank A. Chen for suggesting the study of these events.

Fig. 5. The log(kT/
√
s) versus y scatter plot for charm events.

We show the results of simulation based on the perturbative
three-body matrix element with modified αS (red), PYTHIA
(green) and HERWIG (blue)

an almost flat distribution. In the soft limit, we have the
DGLAP gluon emission probability [9–12]

dPemission =
dQ2

Q2
dy
αS(Q

2)C

π
. (43)

C is the colour factor which, for gluon emission from
a quark line, is CF . We often adopt Q

2 ≈ k2T.
We carry out the simulation at the BELLE centre-of-

mass energy of 10.58GeV. For both the charm quark mass
and the charmed meson mass, we choose 2 GeV.
In the three-body case, it is more useful to replace the

rapidity and kT by quantities that are more directly mea-
surable. For massless particles in the soft limit, for the re-
action [0→ 123], we write in terms of the invariant masses:

kT =
M13M23

M123
, y = log (M23/M13) . (44)

Particle 3 is soft, and it can be identified with the non-
charm meson. We adopt these definitions even for massive
final states. One advantage of doing so is that a plot in the
(log kT, y) plane is the Dalitz plot in the (M

2
13,M

2
23) plane

on the log scale, rotated by 45 degrees. The resonances,
which form horizontal and vertical lines on the Dalitz plot,
form straight lines with slope ±1 on this plot.
In Fig. 5, we plot the results of HERWIG and

PYTHIA, along with the results of simulation based on
a perturbative three-body matrix element for e+e−→ cc̄g
using the modified αS of [5]. The choice of the renormal-
isation scale for the perturbative result is Q2 = k2T. The
gluon is identified with the soft particle 3. The peak of
αS is at 0.575GeV. The number of generated events is
1000 for the perturbative case and 10000 for HERWIG
and PYTHIA. However, because of the low probability of
three-body events, the number of accepted events is much
less for both generators.
On the vertical axis, a transverse momentum of 1 GeV

corresponds to ≈−2.3, and 0.5 GeV corresponds to ≈−3.
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The perturbative distribution is almost flat in rapidity as
discussed above, with some modification due to the finite
mass.
Turning to the behaviour of the Monte Carlo event gen-

erators, we see that the behaviour of the two generators is
quite distinct.
The PYTHIA distribution is easier to understand. The

band at near 1 GeV, corresponding to −2 on the vertical
axis, is understood as a combination of the perturbative
gluon emission and the artificially generated pT, related to
the Gaussian width parameters PARJ(21)–PARJ(24).
The HERWIG distribution has a complicated struc-

ture. The structure resembling faint lines at ±45◦ indi-
cate the typical mass of the cluster that decays into one
charmed and one non-charmed meson. The distribution is
in general softer than the PYTHIA distribution because
the extra particle comes from the decay of a cluster and
most of the energy in this decay is taken up by the charmed
meson. There is little remnant of perturbative gluon emis-
sion, since all of the gluons have split into qq̄ and these
recombine with the colour-connected quark/antiquark to
form clusters.
As mentioned at the beginning of this section, the

Monte Carlo predictions should not be trusted for few-
body exclusive final states. Nevertheless, the experimental
investigation of such configurations can shed light not only
on the areas in which the generators could be improved
but also on the mechanism of hadronisation as a whole.
On the other hand, there would be considerable and, seem-
ingly [29], not insurmountable difficulty associated with
the experimental reconstruction of primary hadrons within
the plethora of decay products.

9 Implementation in Herwig++

We now turn to the implementation of the algorithm
developed in the previous sections. We choose to adopt
Herwig++ [31] as the platform. The hadronisation algo-
rithm of Herwig++ is based on that of HERWIG.
Our implementation entails the following.

1. We have a modified daughter mass distribution in clus-
ter decay, generated according to (36), which can be
inverted analytically. We impose ordering in kT, and
the minimum daughter mass is the sum of the con-
stituent quark masses with the corresponding flavour.
Clusters that are too light to be decayed in the default
Herwig++ implementation are not decayed.

2. We have the option of ‘cluster rotation’, or Regge smear-
ing of the directions of the 3-momenta of the daughter
clusters, as well as the partons making up the daughter
clusters, with respect to the partons making up the par-
ent cluster. This has the distribution ∝ (α′s)2α

′t. Here
t is the Mandelstam variable for the (2→ 2) subprocess
involving, in the initial state, parent cluster partons, and
in the final state, the daughter clusters.

3. We have the option of pomeron inclusion. By imposing
the approximation 2α′pomeron = α

′
reggeon, the resulting

Sudakov form factor is still analytically invertible.

4. We have the option of Regge flavour and baryon gen-
eration taking place after cluster splitting, with weight
∝ (α′s)2α(0) and adjustable constant multiplicative fac-
tor for each flavour and diquark.

In (36), we use the parametrisation

βH ≡ β/100 = 1 , α
′ = 0.9 GeV−2 , α(0) = 0.5 . (45)

Out of the three parameters,α′ andα(0) are fixed by Regge
phenomenology. The remaining parameter, βH, is not well
determined, but the physical results typically depend only
on the logarithm of βH. This is because the typical kT of
cluster decay is the dominant factor in the decay kinemat-
ics. The Herwig++ parameter CLPOW becomes redun-
dant. We start by keeping the values of the other parame-
ters the same as in the default set.
All our simulation results are for e+e− interaction at

the Z0 pole, corresponding to the LEP centre-of-mass en-
ergy. We generate 100000 events in each case. Our simu-
lation results are compared against the default set of ex-
perimental data [32, 33] in Herwig++. Both soft and hard
matrix-element corrections are switched on.
We first show our simulation result for 1−T in Fig. 6.

After including the cluster-rotation effect, the agreement
with the data is comparable with that of Herwig++ and is
better in the region of low 1−T , corresponding to pencil-
like events. We found similar improvement in most other
event-shape observables, with the exception of oblateness.
For spherical events, not shown in the figure, the results are
similar to those obtained using Herwig++.
In addition to the event shapes, we examined the be-

haviour of the single-particle and the identified-particle
distributions. For the former, the results tend to be bet-
ter than the Herwig++ numbers for rapidity, but worse
for transverse momenta with respect to thrust and spheric-
ity axes. As an example of the latter, Fig. 7 shows the in-
plane transverse momentum with respect to thrust axis.
The transverse momentum distributions improve when we
omit the cluster rotation, although doing so would ruin the
agreement with the event shapes. One speculative possibil-

Fig. 6. The distribution of 1−T , with and without the cluster
rotation effect
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Fig. 7. The distribution of in-plane transverse momentum
with respect to the thrust axis, with and without the cluster
rotation effect

ity would be in the over-generation of transverse momenta
in our combined Regge–Herwig++ implementation.
For the identified-particle distributions, the results are

similar to those of Herwig++. The distribution of scaled
momentum of charged particles, shown in Fig. 8, shows a
deficit compared with the experimental data both in the
very large-xp and small-xp regions where xp stands for the
scaled momentum. For the large-xp region, we find better
agreement when the sample is restricted to light, charm or
bottom quarks, so that this is possibly not a serious deficit.
In the small-xp region, the agreement is improved by low-
ering the Herwig++ shower cut-off parameter δ. We found
that the flavour dependence of the shower cut-off is milder
in our approach. Herwig++ uses the parametrisation

Qg = (δ−0.3mq)/2.3 , (46)

whereQg is a gluon virtuality cut-off and δ is constant, but
this yields too much radiation from b-quarks and too lit-
tle from light quarks in our approach. The choice of δ = 2.3
for b-quarks and δ = 1.7 for c-quarks was found to be more
appropriate. An alternative possibility is to introduce the
pomeron. We found that the substitution

(α′s)2αreggeon −→ (α′s)2αreggeon +0.02(α′s)2αpomeron (47)

reproduces the observed charged-particle multiplicity. Do-
ing so, however, leads to the deterioration in the descrip-
tion of the very large-xp region. On the other hand, this
deterioration in the large-xp region makes the agreement
with the thrust-like event-shape distribution better in the
pencil-like region.
The distribution of the proton was found to be in poor

agreement with the data and this is similar to the case of
Herwig++, but the agreement is better in the case of pro-
ton production in charm events. This is shown in Fig. 9.
This seems to imply that we may have an incomplete de-
scription of either the shower cut-off or hadronisation in
our Regge–Herwig++amalgamate approach, in the case of
the light parton from the hard processs.

Fig. 8. The distribution of the scaled momentum of charged
particles, with and without the cluster rotation effect

Fig. 9. The distribution of the scaled momentum of protons for
charm events

For the last item of our implementation, namely that of
flavour generation during cluster decay, we found no visible
effect on any of the distributions.

10 Conclusions

We argued that the dynamical conversion of partons to
hadrons can be effectively factorized into two phases. The
first is an extended perturbative phase based on an univer-
sal infrared coupling. The second is a long-distance hadro-
nisation phase mediated by colour-singlet resonance-pole
dynamics.
From the consideration of the Veneziano N -point

amplitude, we argued that, essentially because of dual-
ity, amplitude-squared factorisation is applicable to the
latter phase as well as the former phase. This factori-
sation has the form of cascade decay, where each de-
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cay except the last one in the chain has Regge angular
behaviour.
Since both phases are factorisable, we can describe the

overall fragmentation process by merging together the two
factorized contributions.
By generalizing the factorisation of the N -point am-

plitude, we proposed a framework for Monte Carlo event
generation. We derived an approximate Regge fragmenta-
tion function as a special case.
Our results are applicable generally to multiple hadron

production from pole-resonance dynamics.
We made a simple implementation of our hadronisation

algorithm in Herwig++. We found that the event shapes
tend to be better compared with the original procedure.
On the other hand, the results are mixed in the case of
single-particle and identified-particle distributions.

Acknowledgements. We thank B.R. Webber for comments
and reading through the manuscript, A. Chen, C.-H. Chen,
H.-Y. Cheng, W.-T. Chen and C.-C. Kuo for informative dis-

cussions, and S. Latunde-Dada for technical assistance.

References

1. G. Marchesini, B.R. Webber, G. Abbiendi, I.G. Knowles,
M.H. Seymour, L. Stanco, Comput. Phys. Commun. 67,
465 (1992)

2. G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti,
K. Odagiri, P. Richardson, M.H. Seymour, B.R. Web-
ber, J. High Energ. Phys. 0101, 010 (2001) [arXiv:hep-
ph/0011363]

3. G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti,
K. Odagiri, P. Richardson, M.H. Seymour, B.R. Webber,
arXiv:hep-ph/0210213

4. T. Sjostrand, S. Mrenna, P. Skands, arXiv:hep-ph/0603175
5. K. Odagiri, J. High Energ. Phys. 0307, 022 (2003)
[arXiv:hep-ph/0307026]

6. V.N. Gribov, Eur. Phys. J. C 10, 71 (1999) [arXiv:hep-
ph/9807224]

7. V.N. Gribov, Eur. Phys. J. C 10, 91 (1999) [arXiv:hep-
ph/9902279]

8. D. Amati, G. Veneziano, Phys. Lett. B 83, 87 (1979)
9. Y.L.Dokshitzer, S.I.Troian, preprintLENINGRAD-84-922

10. Y.I. Azimov, Y.L. Dokshitzer, V.A. Khoze, S.I. Troian,
Phys. Lett. B 165, 147 (1985)

11. Y.I. Azimov, Y.L. Dokshitzer, V.A. Khoze, S.I. Troian,
Z. Phys. C 27, 65 (1985)

12. Y.I. Azimov, Y.L. Dokshitzer, V.A. Khoze, S.I. Troian,
Sov. J. Nucl. Phys. 43, 95 (1986) [Yad. Fiz. 43, 149
(1986)]

13. K. Odagiri, J. High Energy Phys. 0408, 019 (2004)
[arXiv:hep-ph/0407008]

14. See, for example, P.D.B. Collins, An Introduction to Regge
Theory and High Energy Physics (Cambridge University
Press, 1977)

15. A. Donnachie, H.G. Dosch, P.V. Landshoff, O. Nachtmann,
Pomeron Physics and QCD (Cambridge University Press,
2002)

16. G. Veneziano, Nouvo Cim. 57, 190 (1968)
17. See, for example, P.H. Frampton, Dual Resonance Models
(Benjamin, 1974)

18. S. Mandelstam, Phys. Rep. 13, 259 (1974); our notation
follows this reference

19. K. Igi, Phys. Rev. Lett. 9, 76 (1962)
20. R. Dolen, D. Horn, C. Schmid, Phys. Rev. Lett. 19, 402
(1967)

21. K. Igi, S. Matsuda, Phys. Rev. Lett. 18, 625 (1967)
22. A.A. Logunov, L.D. Soloviev, A.N. Tavkhelidze, Phys.
Rev. Lett. 24B, 181 (1967)

23. J.K. Storrow, Phys. Rep. 103, 317 (1984)
24. H.Y. Cheng, arXiv:hep-ph/0603003, and the references
therein

25. Belle Collaboration, C.-C. Kuo et al., Phys. Lett. B 621, 41
(2005) [arXiv:hep-ex/0503006]

26. C.-C. Kuo, talk at Belle τ/2γ meeting, Nagoya, Japan,
11–12 March 2004

27. W.-T. Chen, private communication
28. K. Bardakci, H. Ruegg, Phys. Rev. 181, 1884 (1969)
29. A. Chen, private communication
30. B.R. Webber, private communication
31. S. Gieseke, A. Ribon, M.H. Seymour, P. Stephens, B. Web-
ber, J. High Energy Phys. 0402, 005 (2004) [arXiv:hep-
ph/0311208]

32. DELPHI Collaboration, P. Abreu et al., Z. Phys. C 73, 11
(1996)

33. SLD Collaboration, K. Abe et al., Phys. Rev. D 69, 072003
(2004) [arXiv:hep-ex/0310017]



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


